

UNIVERSITA' DEGLI STUDI DI PERUGIA DIPARTIMENTO DI MEDICINA E CHIRURGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA

CLMMC AA 2021/22

Patologia sistematica VI Gastroenterologia

Prof. Stefano Fiorucci

Colorectal cancer

Harrison's Principles of Internal Medicine – 19-20° Ed.

Total: 19,292,789 new cases

Total: 9,958,133 deaths

Top 10 countries with highest incident cases of colorectal cancer in 2020 and projections to 2040

Paris Endoscopic Classification of CRC

Most cancers arise from a polyp or mucosal lesions

This process begins with an **aberrant crypt**, evolving into a neoplastic precursor lesion (a polyp), and eventual progressing to colorectal cancer over an estimated 10–15 year period.

The cell of origin for the majority of colorectal cancers is currently assumed to be **a** stem cell or stem-cell-like cell.

These cancer stem cells are the result of progressive accumulation of genetic and epigenetic alterations that inactivate tumor-suppressor genes and activate oncogenes. Cancer stem cells reside in the base of the colonic crypts and are essential for the initiation and maintenance of a tumor.

Globally, there are two major distinct precursor lesion pathways:

- the traditional adenoma–carcinoma pathway leading to 70–90% of colorectal cancers;
- the serrated neoplasia pathway (10–20% of colorectal cancers).

These pathways represent distinct multiple genetic and epigenetic events in a rather sequential order.

Cancer Genome Atlas Network Comprehensive molecular characterization of human colon and rectal cancer. *Nature.* 2012; **487**: 330-337

DNA **mismatch repair** (MMR) is a highly conserved biological pathway that plays a key role in maintaining genomic stability.

Chromosomal instability phenotypes typically develop following genomic events initiated by an APC mutation, followed by RAS activation or function loss of TP53.

Conversely, the serrated neoplasia pathway is associated with *RAS* and *RAF* mutations, and epigenetic instability, characterised by the CpG island methylation phenotype, leading to microsatellite stable and instable cancers. Further genome-wide studies have also identified newer markers and phenotypic subtypes on the basis of mutations present (eg, presence of polymerase- ϵ or POLE mutations or mismatch repair deficiency [dMMR]) leading to a hypermutated phenotype.

APC and RAS

Consensus molecular subtypes

In 2014, on the basis of gene expression, colorectal cancer was classified into four molecular subtypes (consensus molecular subtypes [CMS])

The genes or pathways implicated are unique to each CMS

- MSI immune [CMS1]
- canonical [CMS2]
- metabolic [CMS3]
- mesenchymal [CMS4]

Right-sided colorectal cancers are more often MSI-immune and metabolic tumours.

Although the **sidedness and mutation status (***RAS* **or** *RAF***) of tumors are factors** that help to choose systemic treatments, the CMS classification is being explored in clinical trials as a prognostic or predictive marker.

The consensus molecular subtypes of colorectal cancer. *Nat Med.* 2015; **21**: 1350-1356

Although the sidedness and mutation status (RAS or RAF) of tumors are factors that help to choose systemic treatments, the CMS classification is still being explored in clinical trials as a prognostic or predictive marker.

Left-sided versus right-sided disease

Molecular features of right-sided (proximal) colon cancers are different when compared with left-sided (distal) colon cancers and rectal cancers.

Right-sided colorectal cancers are more often MSIimmune and metabolic tumours (CMS1 and CMS3)

Left-sided versus right-sided disease

Apart from molecular differences, embryological, biological, and anatomical differences exist between left-sided and right-sided colorectal cancer.

Sidedness has a key role, particularly in the metastatic setting and is increasingly being recognized as a predictive marker of response to anti-EGFR drugs.

CRC and colon polyps

- Most colorectal cancers, regardless of etiology, arise from adenomatous polyps.
- A polyp is a grossly visible protrusion from the mucosal surface and may be classified pathologically as a non-neoplastic hamartoma (*juvenile polyp and others*), a hyperplastic mucosal proliferation (serrated polyps), or an adenomatous polyp.
- Only adenomas are clearly premalignant, and only a minority of such lesions becomes cancer.
- Adenomatous polyps may be found in the colons of ~30% of middle-aged and ~50% of elderly people; however, <1% of polyps ever become malignant. Most polyps produce no symptoms and remain clinically undetected.

CRC and colon polyps

10% Sessile Serrated Adenomas (SSA)

Colon polyps: pathology classification

Colon polyps histopathology (1) Non neoplastic

Hamartomatous polyp

They are growths, like tumours found in organs as a result of **faulty development**. They are normally made up of a mixture of tissues, **containing mucus-filled glands**, with retention cysts, abundant **connective tissue**, and a chronic cellular infiltration of eosinophils.

- Hamartomatous polyps are often found by chance; occurring in syndromes such as Peutz-Jegher Syndrome or Juvenile Polyposis Syndrome.
- **Peutz-Jeghers syndrome** is associated with polyps of the GI tract and also increased pigmentation around the lips, genitalia, buccal mucosa feet and hands. People are often diagnosed with Peutz-Jegher after presenting at around the age of 9 with an intussusception. The polyps themselves carry little malignant potential but because of potential coexisting adenomas there is a 15% chance of colonic malignancy.
- Juvenile polyps are hamartomatous polyps which often become evident before twenty years of age, but can also be seen in adults. They are usually solitary polyps found in the rectum which most commonly present with rectal bleeding. Juvenile polypoids characterised by the presence of more than five polyps in the colon or rectum, or numerous juvenile polyps throughout the gastrointestinal or any number of juvenile polyps in any person with a family history of juvenile polyposis. People with juvenile polyposis have an increased risk of colon cancer.
- Inflammatory polyp

These are polyps which are associated with inflammatory conditions such as UC and CD

Colon polyps histopathology : adenomas (2)

Benign neoplastic polyps: Adenomas

An adenoma is tumor glandular tissue, that has not (yet) gained the properties of a cancer. The common adenomas of the colon are the: **tubular**, **tubulovillous**, **villous**.

The villous subdivision are associated with the highest malignant potential because they generally have the largest surface area.

This is because the villi are projections into the lumen and hence have a bigger surface area).

However, villous adenomas are no more likely than tubular or tubulovillous adenomas to become cancerous if their sizes are all the same.

Tubular adenoma

Colon polyps histopathology (3)

Serrated polyps of the large intestine consist of those that display a lumen with a serrated or stellate architecture. The serrated polyps family includes: the hyperplastic polyps (HP), the sessile serrated adenomas (SSA) and the traditional serrated adenomas (TSA).

в

Diagnostic criteria of SSA/P from WHO classification (2010)

1. Crypt dilation

2. Irregular branching crypts (inverted T- and/or L-shaped crypts)

3. Excess serration at the base of crypts

If straight crypt (HP-like) account for less than half of the lesion and more than two of three contiguous crypts demonstrate feature of SSA/P (1-3 in upper list), the lesion should be classified as SSA/P.

Colon polyps histopathology:serrated pathway Non neoplastic

Hyperplastic polyps

Most hyperplastic polyps are found in the distal colon and rectum. <u>They have no</u> <u>malignant potential</u>, which means that they are no more likely than normal tissue to eventually become a cancer.

Hyperplastic polyps are serrated polyps.

Hyperplastic polyps have three histologic patterns patterns of growth:

- microvesicular
- goblet cell
- mucin poor

Athough thought to exhibit no malignant potential it has been shown that hyperplastic polyps on the right side of the colon do exhibit a malignant potential.

This occurs through multiple mutations which effect the DNA-mismatch-repair pathways. As such DNA mutations during replication are not repaired. This leads to microsatellite instability which can eventually lead to malignant transformation in polyps on the right side of the colon.

Serrated polyposis syndrome according to the definition proposed by the World Health Organization.

- \geq Five serrated polyps proximal to the sigmoid colon, of which two are \geq 10 mm in size
- Any number of serrated polyps proximal to the sigmoid colon in an individual who has a first degree relative with serrated
 polyposis syndrome
- $\bullet \ge 20$ Serrated polyps distributed throughout the colon, regardless of size

Colon polyps histopathology: serrated pathway

Sessile serrated adenoma (SSA)

SSA with dysplasia

Colon polyps histopathology: serrated pathway Traditional serrated adenoma (TSA)

Servated Adenomas with Diffuse Dysplasia: TRADITIONAL SERRATED ADENOMA (TSA)

- 1% (0,6-1,9) of Colorectal Polyps
- Site:Distal Colon and Rectum
- Size: > 5 mm
- Polipoid (67%), Distal Sessile (33%), Proximal
- Villousness
- Eosinophilic Tall Epithelium
- Ectopic Cript Foci

Colon polyps histopathology: Serrated pathway

Features	Hyperplastic poly	ps (HPs)	Sessile serra	ated SLs)	Traditional s adenomas	errated TSAs)
Clinical characteristics	Prevalence: 20%-30% Size: Usually small or din Morphology: Flat or sess	ninutive (s 5mm) lle	Prevalence: 5%-15% Size: Usually larger th diameter= 5-7mm Morphology: Flat (45%	nan HPs, mean %) or seasile	Prevalence: <1% Size: Usually larger th Morphology: Polypoid	an SSLs or pedunculated
Location		0%–60% distal	る	75%-90% proximal	5	Mostly distal
Endoscopic appearance	White light: • Pale or same color as surrounding mucosa • Round or oval shape • Flatten with insufflation • Absent or fine, lacy vesse Narrow band imaging: • NICE type 1 • Uniform dark or white spe	ele	White light: • Mucus cap • Ring of debris • Cloud-like surface • Irregular shape Narrow band imaging: • NICE type 1 • WASP criteria • Dark spots in crypts		White light: • Erythematous • Multilobulated • "Pine cone" appearance • Type IV-S pit pattern Narrow band imaging characterisitics not well defined	
Histopathology	Microvesicular HP (MVHP): • Narrow, uniform basal cry • Serrated upper crypt • Eosinophilic mucin dropt in cytoplasm	vpt ets	Serration extending to Dilated and inverted " shaped crypts Crypt branching	o base of crypts T" or boot	Pseudostratification Vilious pattern with st pencillate nuclei Eosinophilic predomi Ectopic crypts	retched or hant
	Goblet cell rich HP (GCHP) • Goblet cells predominate epithelium • Less serrated than MVHP	ASSN .				1
3						5
2000 - WH Hyperplastic polyps: Encompasses a without overt n Serrated ader Superficial dys polyp	O 3 rd edition (metaplastic) H all serrated polyps uclear dysplasia homas: S plasia in serrated H	2010 - WH4 Ayperplastic poly imall sessile poly in luminal aspects SSAP: ierrated polyps wild the normal arch hree contiguous of	0 4 th edition yp: os with serration of the crypts th overall distortion itseture in two or rypts	2019 - W Hyperplast Serrated poly of SSL SSL: Serrated poly one unequive	'HO 5 th edition ic polyp: yp without features yp with at least ocal aberrant crypt	
	.1422		14.577		Nettor	

Singh et al. 2012

Ne202

Lin et st, 2014

Lu et al. 2009

Gastroenterology 2019 157949-966.e4DOI: (10.1053/j.gastro.2019.06.041)

Copyright © 2019 AGA Institute Terms and Conditions

Bettington et al, 2014

Colon polyps: risk for CRC

Malignant potential is associated with degree of dysplasia and lesion size

Type of polyp (e.g. vilous adenoma):

Tubular Adenoma: 5% risk of cancer Tubulovillous adenoma: 20% risk of cancer Villous adenoma: 40% risk of cancer Serrated*

Size of polyp and number

<1 cm =<2% risk of cancer

1 cm=10%risk of cancer

2 cm=15%risk of cancer

A polyp which is greater than 0.5 cm needs to be treated

Colon polyps: risk for CRC

TABLE 126-1 Histologic Types of Adenomas and Their Features						
Type of Adenoma	S	ize of Adenoma* (%)		Degree of Dysplasia	(%)
	<1 cm	1-2 cm	>2 cm	Mild	Moderate	Severe
Tubular	77	20	4	88	8	4
Tubulovillous	25	47	29	58	26	16
Villous	14	26	60	41	38	21

*Adapted from Muto T, Bussey HJR, Morson BC. The evolution of cancer of the colon and rectum. Cancer 1975; 36:2251-70.
*Adapted from Konishi F, Morson BC, Pathology of colorectal adenomas: A colonoscopic survey. J Clin Pathol 1989; 35:830-41.

TABLE 126-3 Relation of Adenoma, Histology, and Degree of Dysplasia to the Incidence of Invasive Carcinoma, by Adenoma Size

	Histology (% with Invasive Carcinoma)			Degree of Dysplasia (% with Invasive Carcinoma)		
Adenoma Size (cm)	Tubular	Tubulovillous	Villous	Mild	Moderate	Severe
<1	1	4	10	0.3	2	27
1-2	10	7	10	3	14	24
>2	35	46	53	42	50	48

Adapted from Muto T, Bussey HJR, Morson BC. The evolution of cancer of the colon and rectum. Cancer 1975; 36:2251-70.

Colon polyps symptoms

In the large majority of cases colon polyps **cause no symptoms**. Sometimes, however, there may be signs and symptoms such as:

- Rectal bleeding
- Occult bleeding (anemia)
- Changes in the bowel habit (constipation, diarrhea or narrowing of the stool).
- Pain or obstruction (rare)

Colon polyps diagnosis

Nearly all colon cancers develop from polyps, but the polyps grow slowly, usually over a period of years.

Screening tests play a key role in detecting polyps before they become cancerous.

These tests can also help find colorectal cancer in its early stages, when you have a good chance of recovery.

- Fecal Fecal blood test (immunochemical quantitative).
- Colonoscopy (flexible sigmoidoscopy)
- Barium enema.
- Computerized tomographic colonography (virtual colonoscopy).
- Stool DNA testing.
- Genetic testing.

Colon polyps diagnosis

Colorectal Cancer Screening Recommendations

Risk level	Action	Age	Strength of rec- ommendation	Evidence grade
Average risk	Start screening	45 years	Conditional	Very low
	Screen	50 to 75 years	Strong	Moderate
	Stop screening	> 75 years	Conditional	Very low
One or more first-degree relatives with colon cancer or advanced polyps	Start screening	40 years or 10 years before age of youngest relative at time of diagnosis	Conditional	Very low

Colon polyps endoscopic glossary

Colon polyps endoscopic classification

erms	
Diminutive	Lesion size \leq 5 mm
Small	Lesion size 6–9 mm
Large	Lesion size \geq 20 mm
Polypoid	Lesion protrudes from mucosa into lumen, includes pedunculated and sessile
Pedunculated (0-lp)	Lesion attached to mucosa by stalk; the base of lesion is narrow
Sessile (0-ls)	Lesion not attached to mucosa by stalk; the base and top of the lesion have the same diameter
Non-polypoid	Lesion has little to no protrusion above the mucosa. Includes superficial elevated, flat, and depressed.
Superficial elevated (0-lla)	Lesion height <2.5 mm above normal mucosa; sometimes defined as height less than one-half of the lesion diameter
Flat (0-IIb)	Lesion without any protrusion above mucosa
Depressed (0-IIc)	Lesion with base that is lower than the normal mucosa
Laterally spreading tumor (LST)	Laterally growing superficial neoplasm (instead of upward or downward growth) \geq 10 mm in size
LST-granular-homogenous (LST-G-H)	LST polypoid type that corresponds to Paris subtype 0-lla
LST-granular-nodular mixed (LST-G-NM)	LST type that corresponds to combination of Paris subtype 0-lla and 0-ls
LST-non-granular-flat elevated (LST-NG-FE)	LST non-polypoid type corresponds to Paris subtype 0-lla
LST-non-granular-pseudodepressed (LST-NG-PD)	LST non-polypoid type corresponds to combination of Paris subtype 0-Ila and 0-Ilc
NICE type 1	Serrated class includes hyperplastic and sessile serrated lesions
NICE type 2	Adenomas
NICE type 3	Lesions with deep (>1000 µm) submucosal invasion
Cold spara polypostomy	Spara polypostomy without use of electrocautery

GASTROINTESTINAL ENDOSCOPY Volume 91, No. 3 : 2020

Figure 1. Paris Endoscopic Classification 2005 of superficial neoplastic lesions in the colon and rectum.

Lateral spreading tumors (LTS)

GASTROINTESTINAL ENDOSCOPY Volume 91, No. 3 : 2020

Lateral spreading lesions. Non-polypoid lesions 10 mm in diameter are referred to as laterally spreading tumors (LSTs). They have a low vertical axis and extend laterally along the luminal wall. LSTs are morphologically subclassified into granular type (LST-G) (A, B), which have a nodular surface, and non-granular type (LST-NG), which have a smooth surface (C, D)

Narrow band imaging (NBI)

La luce bianca viene sottoposta ad un filtro che seleziona esclusivamente due lunghezze d'onda (415 e 540 nm) corrispondenti alla luce blu ed alla luce verde. La luce così filtrata ha una particolare affinità ed un picco di assorbimento specifico per l'emoglobina, garantendo l'enfatizzazione dei vasi sanguigni che appaiono blu scuro se localizzati a livello epiteliale o verdi se localizzati a livello sottomucoso. La tecnologia NBI è stata ulteriormente ottimizzata in termini di qualità delle immagini accoppiandola al sistema dell'High Definition Television (HDTV).

Colon polyps: narrow band imaging (NBI)

	Type 1	Type 2	Туре 3
Color	Same or lighter than background	Browner relative to background (verify color arises from vessels)	Brown to dark brown relative to background; sometimes patchy whiter areas
Vessels	None, or isolated lacy vessels may be present coursing across the lesion	Brown vessels surrounding white structures**	Has area(s) of disrupted or missing vessels
Surface pattern	Dark or white spots of uniform size, or homogeneous absence of pattern	Oval, tubular, or branched white structures** surrounded by brown vessels	Amorphous or absent surface pattern
Most likely pathology	Hyperplastic and sessile serrated lesions***	Adenoma****	Deep submucosal invasive cancer

Optical diagnosis of colorectal lesions, NICE classification. The diagnostic criteria for colorectal lesions using NBI as recommended in the NICE

GASTROINTESTINAL ENDOSCOPY Volume 91, No. 3 : 2020

	Type 1	Type 2A	Type 2B	Type 3
Vessel pattern	· Invisible ^{**1}	Regular caliber Regular distribution (meshed/spiral pattern)	Variable caliber Irregular distribution	Loose vessel areas Interruption of thick vessels
Surface pattern	 Regular dark or white spots Similar to surrounding normal mucosa 	•Regular (tubular/branched/papillary)	 Irregular or obscure 	 Amorphous areas
Most likely histology	Hyperplastic polyp/ Sessile serrated polyp	Low grade intramucosal neoplasia	High grade intramucosal neoplasia/ Shallow ₃₃ submucosal invasive cancer	Deep submucosal invasive cancer
Endoscopic image				

- *1. If visible, the caliber in the lesion is similar to surrounding normal mucosa.
- *2. Microvessels are often distributed in a punctate pattern and well-ordered reticular or spiral vessels may not be observed in depressed lesions.
- *3. Deep submucosal invasive cancer may be included.

Endoscopic removal of colon polyps

• Standard polipectomy (Polipectomia endoscopica)

Endoscopic Mucosal Resection

(Mucosectomia Endoscopica)

• Endoscopic Submucosal Dissection (Dissezione sottomucosa endoscopica)

Endoscopic removal of colon polyps: terminology

- Endoscopic mucosal resection (ESR) Technique involving injecting solution into submucosal space to separate mucosal lesion from underlying muscularis propria; lesion can then be removed by snare
- Endoscopic submucosal dissection (ESD)- Technique involving lifting by submucosal injectant and using ESD knife to create incision around lesion's perimeter and to dissect through expanded submucosal layer for en bloc resection
- Hybrid ESD Partial submucosal dissection followed by en bloc snare resection
- Endoscopic full thickness resection Technique involving the use of a full-thickness resection device for lesions <30 mm
- **Cold or hot avulsion** Variant of biopsy technique for resection of fibrous residual or recurrent tissue that is non-lifting ordifficult to capture with a snare. The hot avulsion technique uses endocut current (not coagulation current) and pulls the tissue away in the forceps as the current is applied.
- Argon plasma coagulation Ablative technique requiring use of ionization of argon gas by electrocautery to prevent deep
- tissue injury
- Snare tip soft coagulation Ablative technique requiring use of a microprocessor-controlled generator capable of delivering fixed low-voltage output, which is capped at 19 volts to prevent deep tissue injury
- **Chromoendoscopy** Application of dye to the colon mucosa or in the submucosal injectant for contrast enhancement to improve visualization of epithelial surface detail and resection plane

Standard polypectomy

Cold polypectomy technique. (A) Diminutive colon lesion in white light. (B) Lesion characterization as a diminutive colon adenoma with type 2 NICE features using NBI.

Endoscopic mucosal resection (ESR)

opic Submucosal Resection (ESR) part 1.mp4

Inject-and-cut EMR. (A) A15-mm superficially elevated serrated—appearing lesion under white light with diluted indigo carmine solution. In preparation for resection, we ensure the targeted lesion to the 5–6 o'clock

Endoscopic mucosal resection (ESR)

Inject-and-cut EMR. (A) A15-mm superficially elevated serrated—appearing lesion under white light with diluted indigo carmine solution. In preparation for resection, we ensure the targeted lesion to the 5–6 o'clock

Endoscopic submucosal dissection (ESD)

En bloc resection

Follow up of patients with colon polyps

Colon Cancer Cases Arising in Various Family Risk Settings

Heritable (autosomal dominant) gastrointestinal polyposis syndromes

TABLE 126-11 Adenomatous Polyposis Syndromes				
Syndrome	Gene Mutation	Polyps	Extraintestinal Abnormalities	
Classic FAP	APC (usually truncated protein)	Colonic adenomas (thousands) Duodenal, periampullary adenomas Gastric fundic gland polyps Jejunal and iteal adenomas Iteal lymphoid polyps	Mandibular osteomas Dental abnormalítics	
Gardner variant of FAP	APC	Same as FAP	Osteomas (mandible, skull, long bones) CHRPE Desmoid tumors Epidermoid and sebaceous cysts Fibromas, lipomas Thyroid, adrenal tumors	
Turcot variant of FAP	APC DNA MMR*	Colonic adenomas (sometimes fewer than in classic FAP)	Medulloblastoma Glioblastoma multiforme CHRPE	
Attenuated FAP	APC 5' and 3' regions	Colonic adenomas (<100; proximal colon) Duodenal, periampullary adenomas Gastric fundic gland polyps	Mandibular osteomas (rare)	
Familial tooth agenesis	Axin2 (APC pathway)	Colonic adenomas Hyperplastic polyps	Agenesis of teeth	
Bloom's syndrome	BLM	Colonic adenomas	Small stature Facial erythema/telangiectasia Male sterility Adenocarcinomas, leukemia, lymphoma	
MUTYH polyposis	MUTYH (MYH)	Colonic adenomas (5-100) Duodenal polyposis Gastric cancer	CHRPE Osteomas	

*May be more appropriately classified under hereditary nonpolyposis colon cancer (HNPCC) (see Chapter 127). APC, adenomatous polyposis coli; CHRPE, congenital hypertrophy of the retinal pigment epithelium; FAP, familial adenomatous polyposis; MMR, misritatch repair; MUTYH (mutY homolog [E. co/]).

Heritable (autosomal dominant) gastrointestinal polyposis syndromes

TABLE 126-14 Familial Hamartomatous Polyposis Syndromes					
Syndrome	Mutated Gene	Polyps	Location of GI Polyps	Other Features	
Peutz-Jeghers syndrome	STK11/LKB1	Hamartomas with bands of smooth muscle in the lamina propria	Small intestine Stomach Colon	Pigmented lesions (mouth, hands, feet) Ovarian sex cord tumors Sertoli tumors of the testes Airway polyps Pancreatic cancer Breast cancer Colon and esophageal cancer	
Juvenile polyposis	MADH4, BMPR1A, ENG	Juvenile polyps; also adenomas and hyperplastic polyps	Colon Small intestine Stomach	Colon cancer in some families Congenital abnormalities	
Cowden's disease	PTEN	Hamartomas with disorganized muscularis mucosae	Stomach Colon	Trichilemmomas and papillomas Other hamartomas Benign and malignant breast disease Benign and malignant thyroid disease	
Bannayan-Ruvalcaba- Riley syndrome	PTEN	Juvenile polyps	Colon	Macroencephaly; developmental delay	
Neurofibromatosis	NF1 RET	Neurofibromas	Small intestine Stomach Colon	von Recklinghausen's disease MEN IIB	

MUTYH (muty DNA glycosylase, earlier muty Homolog (E. coli)) is a gene encoding a DNA glycosylase, MUTYH glycosylase, involved in oxidative DNA damage repair

Heritable (autosomal dominant) gastrointestinal polyposis syndromes

ESTIMATED RISK FOR COLON CANCER BY SYNDROME

Syndrome	Gene(s)	Risk
FAP (familial adenomatous polyposis)	APC	90% by age 45
Attenuated FAP	APC	69% by age 80
Lynch (HNPCC)	MLH1, MSH2, MSH6 PMS2, EPCAM	40% to 80% by age 75
MUTYH-associated polyposis	MUTYH	35% to 53%
Peutz-Jeghers	STK11	39% by age 70
Juvenile polyposis	BMPR1A, SMAD4	17% to 68% by age 60

MUTYH (mutY DNA glycosylase, earlier mutY Homolog (E. coli)) is a gene encoding a DNA glycosylase, MUTYH glycosylase, involved in oxidative DNA damage repair

FAP autosomal dominant

Source: Curr Opin Gastroenterol @ 2004 Lippincott Williams & Wilkins

Sporadic cases of CRC

CRC risk factors

Factor		Relative Risk	
Heredity and medical history			
Family history			
1 first-degree relative		2.2	
> 1 first-degree relative		4	
Relative with diagnosis before ag	e 45	3.9	
Inflammatory bowel disease			
Crohn's disease	colon	2.6	
Ulcerative colitis	colon	2.8	
Ulcerative colitis	rectum	1.9	
Others			
Obesity (per 5-unit increase in BN	/II)		
Men	colon	1.3	
	rectum	1.1	
Women	colon	1.1	
Alcohol consumption		1.1	
Red meat consumption		1.3	
Diabetes		1.3	
Processed meat consumption		1.2	

CRC screening

Programmi di screening del cancro del colon-retto

Rischio normale medio (età >50 anni, assenza di altri fattori di rischio)

ricerca sangue occulto annuale, rettosigmoidoscopia con strumento flessibile o Colonscopia ogni 10 anni

Rischio moderato

- Storia di adenoma: colonscopia

 parenti di primo grado con CRC: colonscopia all'età di 40 anni, o 10 anni prima se familiari hanno presentato il tumore in giovane età

- parenti di primo grado con adenoma prima di 60 anni: colonscopia all'età di 40 anni

Rischio elevato

- poliposi familiare: colonscopia a dieci anni di età e valutazione genetica

 - cancro in poliposi non familiare: colonscopia a 20 anni e valutazione ogni 2 anni; dopo 40 anni, colonscopia ogni anno; valutazione genetica

 malattie infiammatorie del colon: colonscopia ogni 2 anni in RCU o Crohn-colite estese a tutto il colon, della durata 8 anni; se colite ulcerosa o Crohn-colite sono limitate al colon sinistro, dopo 12 anni

CRC presenting symptoms

Symptoms depend on the anatomic location

- Cancer in right colon usually become larger than cancer in the left colon and synptoms are less specific (fatigue, anemia, weight loss, intermittent bleeding)
- Cancer in the left colon are more commonly linked to stool obstruction, abdominal pain & rectal bleeding
- Cancer from rectosigmoidal location might have hematochezia, tenesmus, narrowing of stool caliber. Anemia is less frequent. Rectal bleeding is common.

CRC presenting symptoms Symptoms depend on the anatomic location

- In general abdominal pain is seen in 44% of patients, change in bowel habits in 43%, blood in the stools or dark stools in 40%, weakness in about 20%, Iron deficiency anemia in 10% and weight loss in about 5%.
- Symptoms can be of gradual onset or sudden such as when the tumor causes intestinal obstruction or perforation (a hole in the bowel wall).
- About 20% of patients will have disease already spread to the liver at the time of diagnosis.

Common causes of rectal bleeding

Table 1. Causes of Acute Lower Gastrointestinal Bleeding in Adults.*			
Cause	Percentage of Cases		
Diverticulosis	30–65		
Ischemic colitis	5–20		
Hemorrhoids	5–20		
Colorectal polyps or neoplasms	2–15		
Angioectasias	5–10		
Postpolypectomy bleeding	2–7		
Inflammatory bowel disease	3–5		
Infectious colitis	2–5		
Stercoral ulceration	0–5		
Colorectal varices	0–3		
Radiation proctopathy	0-2		
NSAID-induced colopathy	0–2		
Dieulafoy's lesion	Rare		

Colorectal cancer staging

CRC diagnosis and staging

FIGURE 126-6. Comparison of carcinoma in situ and invasive cancer. Carcinoma is considered intramucosal or carcinoma in situ, as indicated by the area labeled "1," either in a pedunculated adenoma (*left*) or in a sessile adenoma (*right*) when there is not a breach of the muscularis mucosae. This lesion, as a rule, does not metastasize. Carcinoma in an adenomatous polyp is considered invasive when it breaches the muscularis mucosae, as indicated by the areas labeled "2." Invasive cancer in a pedunculated polyp (*left*) is unlikely to metastasize, and it is managed differently from invasive cancer in a sessile polyp (*right*), which often requires surgical resection.

Primary tumor (T)

Tx – Primary tumor cannot be assessed

Tis – Carcinoma in situ

- T1 Tumor invades submucosa (inner most lining of colon)
- T2 Tumor invades muscularis propria (into the muscle)
- T3 Tumor invades through the muscularis propria into the subserosa (gets outside the colon)
- T4- Tumor invades other organs or structures, or perforates

CRC diagnosis and staging

Primary tumor (T)

- Tx Primary tumor cannot be assessed
- Tis Carcinoma in situ
- T1 Tumor invades submucosa (inner most lining of colon)
- T2 Tumor invades muscularis propria (into the muscle)
- T3 Tumor invades through the muscularis propria into the subserosa (gets outside the colon)
- T4- Tumor invades other organs or structures, or perforates

Colon cancer survival rate

GETTING SCREENED CAN MAKE ALL THE DIFFERENCE

If found early, colon cancer is highly treatable¹:

Stage I = 94%* survival rate

Stage II = 82%* survival rate

Stage III = 67%* survival rate

Stage IV = 11%* survival rate

*Based on 5-year survival rate.

 Lansdorp-Vogelaar I, van Ballegooijen M, Zauber A, Habberna J, Kulpers E. Effect of rising chemotherapy costs on the cost savings of colorectal cancer screening. J Natl Cancer Inst. 2009;101:1412-1422.

BeSeenGetScreened.com

©2014 Exact Sciences Corporation. All rights reserved.

CRC staging: TC and PET

Rectal cancer: eco-endoscopy

T3

Т4

	Illustration	T2-Weighted MR Images	Anatomical Landmark	Definition	Clinical Relevance		
	tum ris propria osa		MRF (arrowheads)	A thin low signal intensity line surrounding the mesorectum; CRM is measured by the shortest distance between the tumor and MRF (< 1 mm = positive; 1–2 mm = threatened).	CRM is the surgical margin of TME: a positive CRM is a strong predictor of local recurrence and poor survival.		
٩٢	MRF Mesone Mesone Submuc		Mesorectum (*)	Fatty tissue surrounding the rectum, with lymph nodes and lymphatic vessels.	T-staging; tumor that extends beyond the muscularis propria (≥ T3a) enters into the mesorectum.		
OBLIQUE AXI		0	Rectal wall layers	Visible layers at T2-weighted MRI include the mucosa (innermost thin hypointense area); submucosa (middle hyperintense area); and muscularis propria (outer hypointense area).	Assessment of the depth of the tumor penetration within the wall at T staging (T1: up to the submicosa; T2: up to the muscularis propria; T3: beyond the muscularis propria).		
			Anterior peritoneal reflection (curved arrow)	Hypointense line of the peritoneum attached to the anterior wall of the rectum in a V-shape (seagull sign). In the sagittal plane, this is seen above the top of the seminal vesicle in the sagittal plane in men and in the plane of the uterocervical region in women.	A tumor that invades the peritoneum is T4a, and the prognostic factors include poor survival and independent risk of intraperitoneal recurrence after surgery.		
A	that		Retrorectal space	Virtual space between the posterior	Posterior plane of dissection in		
AGITTAL		S Pa	(red *)	Muscular structure at the anorectal junction, on the top of the puborectalis muscle.	Distance from the inferior edge of the tumor to the anal verge defines the tumor location as low, mid-, or high rectum.		
S	3 Sta		Anal verge (red arrowhead)	Lower edge of the anal canal.	Inferior edge of turnor in relation to the anal verge indicates high, mid-, or low rectal cancer.		
в			Internal sphincter	Continuation of the circular muscular layer	Helps determine the stage of low		
F			(gray arrow)	of the rectum (smooth muscle).	rectal cancer; a higher risk of involvement of the CRM (narrow		
ORON	Mus L CODE		External sphincter complex (green arrow)	Mainly the continuation of the levator ani with the puborectalis sling (skeletal muscle).	mesorectum); involvement indicates worse outcomes; provides relevant information for determining whether to perform a		
0				Plane between the external and internal sphincter.	sphincter-sparing surgery.		
С							

. Chart shows the anatomic landmarks of the rectum, describes their clinical relevance, and summarizes their imaging appearance. *A*, Illustration and MR images in the oblique axial view best depict the MRF, mesorectum, rectal wall layers, and anterior peritoneal reflection. *B*, Illustration and MR image in the sagittal view best depict the retrorectal space, anorectal ring, and anal verge. Curved arrows = anterior peritoneal reflection, white * = mesorectum. *C*, Illustration and MR image in the coronal view best depict the internal sphincter, external sphincter complex, and intersphincteric space. (Illustrations adapted and reprinted, under a CC BY-ND 4.0 license, from Memorial Sloan Kettering Cancer Center.)

Horvat N. February 15, 2019 https://doi.org/10.1148/rg.2019180114

Table 14. Treatment algorithm for early colon cancer

Stage	TNM	Treatment					
		Surgery	Pathology report	Clinical risk	Additional surgery	Age (years)	Postoperative (6 months)
0/I	Tis/T1 N0	Local excision	<g3, l0,="" r0<br="">>G2, L1, V1, invasion of sub- mucosa</g3,>	Low (LN mets in 4%)High	- Wide resection		-
1	>T1	Wide surgical resection and anastomosis		-	-		-
п	T3/4 N0	Hemicolectomy and lymph node		 Low High: at least one of <12 LN 	-	<70	(FU) FU(+oxaliplatin)
		resection		pT4, occlusion, perforation	-	>70	FU (+ oxaliplatin for younger biological age)
ш	N+				-	<70 >70	FU + oxaliplatin FU (+ oxaliplatin for younger biological age)

TNM, tumour-node-metastasis.

Anti EGFR and VEGF

argeted Therapy Drug	Results
Bevacizumab (Avastin)	 OS of bevacizumab plus IFL compared with IFL alone (20.3 vs 15.6 months; P <.001). PFS of bevacizumab plus IFL compared with IFL alone (10.6 vs 6.2 months; P <.001)
Cetuximab (Erbitux)	 Median time to disease progression comparing cetuximab plus an irinotecan-based regimen with cetuximab alone (4.1 vs 1.5 months; P <.001).
Panitumumab (Vectibix)	 46% reduction in the relative risk of progression was observed in patients receiving panitu- mumab compared with those receiving best supportive care (HR, 0.54; 95% Cl, 0.44-0.66).
Ramucirumab (Cyramza)	 For patients receiving ramucirumab plus FOLFIRI, median OS duration was 13.3 months, whil patients receiving FOLFIRI alone had a median OS duration of 11.7 months (P = .0219).
Ziv-aflibercept (Zaltrap)	 OS was longer in patients receiving ziv-aflibercept plus FOLFIRI compared with patients receiving placebo plus FOLFIRI (13.80 vs 11.93 months; <i>P</i> = .0008). The difference in median PFS also favored the ziv-aflibercept plus FOLFIRI compared with placebo plus FOLFIRI (6.80 vs 4.53 months; <i>P</i> < .0001).
Regorafenib (Stivarga)	 OS was longer in the regorafenib arm than in the placebo arm (6.4 vs 5.0 months; P = .0052) PFS was also longer in the regorafenib arm: 1.9 months versus 1.7 months in the placeb arm (P < .0001).

CRC therapy: the role of molecular signature

Data derived from multiple trials have indicated that **KRAS** mutations can be considered a **highly specific negative** biomarker of response to anti-EGFR monoclonal antibodies (MoAb). In the first-line setting, retrospective analysis of phase II and III trials comparing standard 5-fluorouracilbased chemotherapy and oxaliplatin or irinotecan with the addition of **bevacizumab**, cetuximab or panitumumab confirmed that the benefit of the MoAb was restricted to patients with *KRAS* wild-type tumors.

CRC and PD1/PDL1

There is a growing body of literature that recognizes the importance of anti-PD-1 therapy for **MSI (Microsatellite instability)** tumors among CRC subtypes.

PDL1 in MSI CRC

CRC and PD1/PDL1

Study/ClinicalTrials.gov Identifier	Drug(s)	N	Patient population	(iO)RR	Phase	Primary endpoint	12m OS
Le et al. (13), NEJM 2015 NCT01876511	Pembrolizumab	41 (32 CRC)	dMMR:11 pMMR 21	dMMR 40% pMMR 0%	H.	irPFS	121
Lee et al. (27), JCO 2017 NCT02260440	Pembrolizumab + azacitidine	31	30 pts with MSS mCRC	3%	П	ORR	
Shahda et al. (28), JCO 2017 NCT02375672	Pembrolizumab + mFOLFOX6	30 (3 MSI-H)	1st line mCRC	53%	Щ	mPFS	-
O'Neil et al. (23), BH 2017 NCT02054806	Pembrolizumab	137 (23 enrolled)	PD-L1 positive refractory mCRC	4%	lb	ORR	29,8%
Le Dung et al. (24), KEYNOTE-164 NCT02460198	Pembrolizumab	63	MSI-H mCRC treated with ≥1 prior line	32%	I	ORR	76%
NCT02788279	Atezolizumab +- Cobimetinib	363 (1.7% MSI-H)	MSS/MSI-L mCRC	2,7%	Ш	OS	
NCT01633970	Atezolizumab + FOLFOX + Bevacizumab	23	Refractory mCRC	52%	lb	Safety	
Brahmer et al. (10), NEJM 2012 NCT00729664	Nivolumab	19	mCRC MSI unknown	0%	l (multi tumors)	Safety	(Ť)
CheckMate142 NCT02060188	Nivolumab	74	dMMR/MSI-H mCRC	31,1%	Ш	ORR	85%
CheckMate142 NCT02060188	Nivolumab + Ipilimumab (4 doses)	119	dMMR/MSI-H refractory mCRC	55%	п	ORR	85%
CheckMate142 NCT02060188	Nivolumab + Ipilimumab (1mg/kg) Q6W	45	dMMR/MSI-H First-line mCRC	60%	П	ORR	83%
NCT02298946	CTX + AMP-224 + SBRT	17	mCRC	0%	1	Safety	227

CTX, cyclophosphamide; SBRT, stereotactic body radiation therapy; mCRC, metastatic colorectal cancer; MSI, microsatellite instability; H, high; MSS, microsatellite stability; pMMR, mismatch repair proficient; ORR, objective response rate; irORR, immune-related ORR; PFS, progression-Free Survival; OS, overall survival; RR, response rate; BRR, best RR. Details available at: www.clinicaltrials.gov.

CRC surgery

CRC metastatic disease

CRC adjuvant chemotherapy

TABLE 7: Adjuvant chemotherapy regimens for colorectal adenocarcinoma (nonmetastatic)

Drug/combination	Dose and schedule			
Oxaliplatin/fluorourac	il/leucovorin (FOLFOX4)			
Oxaliplatin	85 mg/m ² IV piggyback over 2 hours on day 1 only			
Leucovorin	200 mg/m ² /d over 2 hours on day 1 given simultaneously with oxaliplatin			
Fluorouracil	400 mg/m ² IV bolus over 2 to 4 minutes on days 1 and 2			
Fluorouracil	600 mg/m ² continuous infusion over 22 hours on days and 2 every 14 days for 12 cycles			
Andre T, Boni C, Mounedji-Bou	diaf L, et al: N Engl J Med 350:2343-2351, 2004.			
Oxaliplatin/fluorourac	il/leucovorin (Modified FOLFOX6)			
Oxalipiatin	85 mg/m ² IV piggyback over 2 hours on day 1 only			
Leucovorin	400 mg/m ² /d over 2 hours on day 1 given simultaneously with oxaliplatin			
Fluorouracil	400 mg/m ² IV bolus over 2 to 4 minutes on day 1.			
Fluorouracil	2400 mg/m ² continuous infusion over 46 hours on day 1 every 14 days for 12 cycles			
Allegra CJ, Yothers G, O'Conne	II MJ, et al: J Clin Oncol 29:11-16, 2011.			
FLOX				
Fluorouracil	500 mg/m ² IV bolus weekly for 6 weeks			
Leucovorin	500 mg/m² IV weekly for 6 weeks each 8-week cycle x 3			
Oxaliplatin	85 mg/m ² IV administered on weeks 1, 3, and 5 of each 8-week cycle x 3			
Kuebler JP, Weiand HS, O'Conn	ell MJ, et al: J Clin Oncol 25:2198-2204, 2007.			
Capecitabine and Oxa	liplatin (XELOX)			
Oxaliplatin	130 mg/m ² IV piggyback over 2 hours on day 1 only			
Capecitabine	1,000 mg/m ² twice daily on days 1–14 every 3 weeks for 8 cycles			
Haller DG, Tabernero J, Marour	J. et al: J Clin Oncol 29:1465-1471, 2011.			
Capecitabine				
Capecitabine	pecitabine 1,250 mg/m ² twice daily on days 1–14 every 3 week for 8 cycles			
Twelves C, Wong A, Nowacki M	P. et al: N Engl J Med 352:2696-2704, 2005.			